FACTORING (Notes)
x^3+ 5x^2-4x-20
x^2(x-5)-4(x+5)
(x+5)(x^2-4)
(x+5)(x-2)(x+2)
Zeros for this Polynominal are: (-5,0)(2,0)(-2,0)
x^3+4x^2-9x-36
x^2(x+4)-9(x+4)
(x^2-9)(x+4)
(x-3)(x+3)(x+4)
Zeros for this Polynominals: (3,0)(-3,0)(-4,0)
-----------------------------------------------------
#1 LET y=x^2 & y^2 =x^4
2x^4 -x^2-3
2y^2-y-3
(2y-3)(y+1)
2y-3=0 or y+1=0
y=1.5 or y=1
x^2=1.5 or x^2=-1
#2
x^4-5x^2+4
y^2-5y+4
(y-4)(y-1)
y-4=0 or y-1=0
y=4 or y=1
x^2=4 or x^2=1
x=+/-2 or x=+/-1
(x+2)(x-2)(x+1)(x-1)
Wednesday, November 17, 2010
Monday, November 1, 2010
NOTES FOR 11-1-2010
BELL RINGER
Classify the following polynomials as
A.) Quadratic
B.) Cubic
C.) Quartic
D.) Quintic
1.) X^3-X^2+2
2.) X^5+6X^3-4
3.) X^2
4.) X^4-2X^2+2X
AGENDA
I. Bell Ringer
II. Solving Polynomialsusing synthetic substitution
Objective: Students will classify and solve polynomials
Big Picture: Data from science, business, and engineering can be modeled using polynomial curves
NOTES
Polynomials - one or more terms of an algebraic expression
Degree of a Polynomial- is defined by the largest exponent of the variable
EX.
3X^3 <------ Degree 3
3^3X <------ Degree 1
A polynomial with degree 3 can have at MOST 4 terms
Ax^3+Bx^2+Cx+D
Ax^3=first term
Bx^2=second term
Cx=third term
D=forth term
Synthetic Substitution- Is a method for solving any polynomial for a given value
P(X)= 3X^4-7X^3-5X^2+9X+10
P(2)=3(2)^4-7(2)^3-5(2)^2+9(2)+10
P(2)= 0
2_l 3 -7 -5 9 10
6 -2 -14 10
------------------------
3 -6 7 -5 20
Subscribe to:
Comments (Atom)